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We construct an integral equation scheme for magnetic binary mixtures of an ideal soft-core Ising fluid and
a soft-sphere fluid by mapping the system onto an equivalent nonmagnetic ternary mixture. We apply the
multicomponent Ornstein-Zernike equation together with a closure relation based on the soft mean spherical
approximation and a field constraint for the Ising fluid component. Phase coexistence curves are calculated
both by directly evaluating the chemical potentials via the bridge function, and by using a Maxwell-like
construction which is derived in the text. Our results are compared to Monte Carlo data obtained earlier, and
we find that the second method yields a much better agreement with the simulations.

DOI: 10.1103/PhysRevE.72.056121 PACS number�s�: 64.60.�i, 64.10.�h, 75.50.Mm, 64.75.�g

I. INTRODUCTION

Binary spin fluid mixtures �1,2� form an interesting model
system for several reasons. In particular, they can be consid-
ered as an extension of the Blume-Emery-Griffiths lattice
model for He3

uHe4 mixtures �3� to continuous space and
finite pressures, as it was shown in �2�. In the limit of infinite
pressure the mean-field phase diagram of the ideal Ising mix-
ture in the absence of an external field coincides with the
well-known Blume-Capel �3–5� diagram exhibiting continu-
ous and discontinuous transitions between superfluid or fer-
romagnetic and normal or paramagnetic states with a tricriti-
cal point separating the second-order �- or Curie line from
the first-order demixing transitions. At low pressures, the line
of tricritical points shows a crossover from demixing to gas-
liquid type and ends in the tricritical point of the pure ideal
Ising fluid �see Fig. 1�.

Of course, modeling the superfluid phase using a one-
dimensional order parameter can only give a qualitative pic-
ture of the real phase behavior of He3

uHe4 mixtures. There
have already been some attempts using instead of Ising spins
planar XY spins which fall into the right universality class,
both on the lattice �6–8� and recently also in a continuous
fluid �9�. However, due to computational complexity it is still
reasonable to consider Ising spins for a first integral equation
study of a magnetic fluid mixture.

Another reason why especially Ising fluid mixtures are
relevant is that due to the discrete spin variable the Ising
fluid is mathematically equivalent to a nonmagnetic symmet-
ric binary mixture �10�. Consequently, the Ising mixture cor-
responds to a ternary system with two of the components
forming a symmetric subsystem.

Finally, the Ising mixture serves as a model for studying
phase transitions that can occur in realistic mixtures of dipo-
lar fluids or ferrofluids. Just recently the global phase dia-
gram of a similar model, the mixture of two dipolar Stock-
mayer fluids, has been investigated within a modified mean-
field density functional approach �11�. Although those
systems are of type II rather than I in the classification of van
Konynenburg and Scott �12�, i.e., they exhibit a line of con-
solute points in addition to the plait point line, some of the
topologies shown there also appear in our Ising mixture stud-

ies. Furthermore, mixtures of dipolar hard spheres, resem-
bling the ideal Ising fluid in the aspect of a lacking isotropic
attractive interaction, were considered in �13,14�, and also in
the presence of a finite external field �15�.

So far, the phase behavior of Ising mixtures has just been
explored using a van-der-Waals–like mean-field theory �1�,
such that comparison with Monte Carlo �MC� simulations
was only possible on a qualitative level �2�, i.e., by looking
at the topology of the phase diagrams. In this paper, we want
to improve this situation by establishing a theory that incor-
porates correlations and allows us to make quantitative pre-
dictions of the phase behavior, starting with the most basic
case of an ideal Ising mixture.

For the pure ideal Ising fluid, which we studied in �16�,
we could achieve excellent agreement of the phase bound-

FIG. 1. x-T-P diagram of the ideal Ising mixture at H=0 calcu-
lated within the mean-field theory �taken from �2��. Thick line,
liquid-vapor curve of the pure Ising fluid; thin lines, isobaric curves
on the first order surface; dotted line, tricritical line; dark surface,
Curie surface; light surface, coexistence surface of para-ferro first-
order transitions. Tr and pr are reduced quantities defined via van-
der-Waals parameters �2�.
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aries obtained from integral equation theory with simulation
data by applying the Maxwell construction to the pressure
calculated via the virial equation of state, and therefore one
of the goals of this work was to generalize this concept to a
binary fluid mixture.

The paper is organized as follows: In the next part, the
model is defined and the integral equation theory is set up by
mapping the binary magnetic mixture onto a ternary non-
magnetic one. Conditions for phase equilibria in the x-P and
x-T planes are established, and a Maxwell-like construction
for two-component systems is derived. In the following sec-
tion, the details of the numerical calculations are discussed.
Subsequently, we present our results, showing both x-P and
x-T phase diagrams obtained within the integral equation
theory and compare them to previous MC simulation data
from �2�. Finally, we give a brief summary of our conclu-
sions and an outlook on future work.

II. MODEL

We consider a system in volume V with N particles in
total, consisting of Na nonmagnetic soft spheres and Nb Ising
particles. Its total potential energy can be written as

U = �
i�j

N

���rij� + sisjJ�rij�� − H�
i=1

N

si, �1�

where ri is the three-dimensional spatial coordinate of the ith
molecule, si denotes its spin, which is 0 for species a and ±1
for species b ,rij = �ri−r j� is the interparticle distance, and H
is the external magnetic field. J�r� denotes the ferromagnetic
interaction potential of the Yukawa type given by

J�r� = − �
e−�r−��/�

r/�
, �2�

and the soft-core interaction ��r� has the form of a truncated
and shifted Lennard-Jones potential,

��r� = �4��	�

r

12

− 	�

r

6� + � , r � �6 2�

0, r 	 �6 2�
 . �3�

Since the only attractive force present is due to the ferromag-
netic interaction, we call the system an ideal Ising mixture,
in contrast to the nonideal system, where also a nonmagnetic
attraction is present. We choose the Yukawa and the soft-core
interaction to be of equal strength �=�, and both species to
have the same diameter �.

A. Mapping to a ternary mixture

Similar to the case of the pure Ising fluid �16�, the binary
ideal Ising mixture can be mapped onto a ternary system
with nonmagnetic interactions, whose three components are
the soft spheres �s=0�, the Ising particles with spin up
�s=1�, and those with spin down �s=−1�. The corresponding
particle numbers are

N1 = Na, N2 = Nb
+, N3 = Nb

−, �4�

with Nb=N2+N3. Now the total energy can be written as

U = �
i�j

N

u
��rij� − HM , �5�

where 
 and � denote the species of particle i and j, respec-
tively, and M is the total magnetization of the system, de-
fined as M =�i=1

N si=N2−N3. The new interaction potentials
u
��r� are given by

u11�r� = u12�r� = u13�r� = ��r� ,

u22�r� = u33�r� = ��r� + J�r� ,

u23�r� = ��r� − J�r� , �6�

and fulfill the symmetry relation u
��r�=u�
�r�. The magne-
tization m of the Ising fluid is given by m=M /Nb. Defining
the concentrations of the components as x=Nb /N,
x�=N3 /N, x−x�=N2 /N, m can be expressed as

m = 1 − 2
x�

x
, �7�

yielding a connection between the magnetization of the Ising
fluid component and the mole fractions of the ternary mix-
ture. The overall particle density of the system is given by
�=N /V=�1+�2+�3, where the partial densities are
�
=N
 /V or

�1 = �1 − x��, �2 = �x − x���, �3 = x�� . �8�

B. Integral equations

The Ornstein-Zernike �OZ� equations for a ternary mix-
ture read �17�

h
��r� = c
��r� + �
=1

3

�� c
��r − r���h��r��dr�, �9�

where h
��r� are the total and c
��r� the direct correlation
functions and 
 ,�=1,2 ,3. The OZ equations are solved in
combination with an approximate closure relation connecting
the correlation functions to the interaction potentials:

g
��r� � h
��r� + 1 = e−�u
��r�+h
��r�−c
��r�+B
��r�, �10�

where the factor � is now the inverse temperature 1/kBT
with kB being Boltzmann’s constant. In our case we use for
the bridge function B
��r� a modified soft mean spherical
approximation �SMSA�, given by

B
��r� = �ln�1 + s
��r�� − s
��r� , s
��r� � 0

0, s
��r� � 0
� , �11�

where
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s
��r� = h
��r� − c
��r� − �u
�
l �r� , �12�

and u
�
l �r� denotes the long-range part of the potential

u
��r�. Using a Boltzmann-like switching exponent as in
�16� for the pure Ising fluid, the long-range parts u
�

l �r� are

u22
l �r� = u33

l �r� = J�r�e−���r�,

u23
l �r� = − J�r�e−���r�,

u1

l �r� = 0, 
 = 1,2,3. �13�

Setting B
��r� equal to zero �as in the HNC closure� for
s
��r��0 in �11� serves the purpose of avoiding negative
and thus unphysical values of g
��r� that may occur in the
pure SMSA.

C. Thermodynamic quantities

Once the pair correlation functions h
��r� and c
��r� are
known, thermodynamic quantities such as the pressure and
the chemical potential are calculated in a straightforward
way, along the lines of the binary case �16�. The pressure P
is found via the virial equation of state,

P��1,�2,�3,T� = �kBT −
2�

3 �

,�=1

3

�
���
0

� du
��r�
dr

g
��r�r3dr ,

�14�

whereas the excess part of the chemical potential �

ex can be

obtained from Lee’s formula �18,19� as

��

ex = �

�=1

3

���
0

� �1

2
h
�

2 �r� −
1

2
h
��r�c
��r� − c
��r�

+ B
��r�g
��r� −
h
��r�
s
��r� �0

s
��r�

B�s��ds��4�r2dr ,

�15�

with the integral over the bridge function given by

�
0

s

B�s��ds� = ��1 + s�ln�1 + s� −
s�s + 2�

2
, s � 0

0, s � 0
 .

�16�

The total chemical potential can then be written as

�
��1,�2,�3,T� = �

ex + kBT�ln �
 + 3 ln �
� , �17�

where �
 is the thermal de Broglie wavelength.

D. Phase coexistence

Since we intend to find phase boundaries in x-T-P space,
we will now switch from the set of variables ��1 ,�2 ,�3 ,T� to
a description in terms of the total density and the concentra-
tions, �� ,x ,x� ,T�, using the expressions given in Eq. �8�.
Two phases I and II characterized by ��I ,xI ,xI�� and
��II ,xII ,xII� � are in equilibrium if they share the same pressure

P and the same chemical potentials �
 of all three compo-
nents,

P��I,xI,xI�,T� = P��II,xII,xII� ,T� = P ,

�1��I,xI,xI�,T� = �1��II,xII,xII� ,T� ,

�2��I,xI,xI�,T� = �2��II,xII,xII� ,T� ,

�3��I,xI,xI�,T� = �3��II,xII,xII� ,T� . �18�

For the Ising fluid component, an additional requirement
must be fulfilled, the external field constraint �FC�, which is
a consequence of the mapping between the magnetic binary
and the nonmagnetic ternary mixture �see the Appendix for a
rigorous derivation�. Defining �� as

����,x,x�,T� � �3��,x,x�,T� − �2��,x,x�,T� , �19�

it can be written as

����,x,x�,T� = 2H . �20�

Equation �20� can be viewed as a constraint on the concen-
tration x� ,x�=x��� ,x ,T ,H�, allowing us to rewrite the con-
ditions for phase coexistence �18� in terms of the new set of
variables �� ,x ,x��� ,x ,T ,H� ,T���� ,x ,T ,H� instead of
�� ,x ,x� ,T�. Introducing the chemical potential �b of the
Ising fluid component �see Appendix and cf. �16�� as

�b��,x,T,H� �
�2��,x,T,H� + �3��,x,T,H�

2
, �21�

we can write

P��I,xI,T,H� = P��II,xII,T,H� = P ,

�a��I,xI,T,H� = �a��II,xII,T,H� ,

�b��I,xI,T,H� = �b��II,xII,T,H� , �22�

instead of �18�, with �a being identical to �1. These equa-
tions now have the same form as the usual phase equilibrium
conditions in a binary mixture. Contrary to the pure fluid
case, one has to find both density and concentration for each
phase, so a system of four equations has to be solved instead
of two.

E. Phase coexistence at constant P

If we want to display phase boundaries in an x-T diagram,
we are restricted to a constant pressure plane in the thermo-
dynamic space. The corresponding condition,

P��,x,T,H� = P , �23�

can be regarded as an additional constraint �pressure con-
straint, PC� imposed on the density � ,�=��x ,T ,P ,H�. Con-
sequently, we can replace the set of variables �� ,x ,T ,H� by
the new one ���x ,T ,P ,H� ,x ,T ,H�= �x ,T ,P ,H�. Thus, in
this case the conditions of phase equilibrium reduce to the
two equations
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�a�xI,T,P,H� = �a�xII,T,P,H� ,

�b�xI,T,P,H� = �b�xII,T,P,H� , �24�

with only the concentrations of the two coexisting phases as
unknowns. Finding the phase boundary is now very similar
to the pure fluid case, where one has the equations for equal
pressure and equal chemical potential instead of Eqs. �24�,
and �I and �II instead of xI and xII.

F. Maxwell construction

In �16� we have applied the equal-area Maxwell construc-
tion to the isotherms calculated via the virial equation of
state in order to locate the phase boundaries for the pure
Ising fluid, instead of equating the chemical potentials ob-
tained from the Lee formula �15�, as it is usually done. This
is only possible because the system of OZ/SMSA/FC equa-
tions yields solutions for the correlation functions in a wide
range of temperatures and densities, including the two-phase
region, whereas for other approximations such as hypernet-
ted chain �HNC� or Percus-Yevick �PY� no solution exists
between the spinodal points.

It is worth mentioning that there exists also another type
of Maxwell construction that does not depend on the exis-
tence of solutions to the OZ equations in the two-phase re-
gion, namely the double-tangent construction, which uses
only derivatives of the Helmholtz free energy with respect to
the density to obtain the pressure �via the energy route� and
the algebraic Euler equation connecting the chemical poten-
tial to the pressure and free energy. The Helmholtz free en-
ergy can be calculated by first integrating the virial pressure
�like in the equal-area Maxwell construction�, but along a
supercritical isotherm �to provide the existence of solutions
within either closure anywhere inside the integration region�
and then the excess internal energy along an isochore until
one reaches the required subcritical temperature. In particu-
lar, such a procedure �in tandem with the Euler equation� was
successfully applied in Ref. �20� to a simple Lennard-Jones
fluid. This procedure as well as the double-tangent Maxwell
construction, can be used, in principle, for a wide class of
closures including the HNC and PY �despite the fact that no
solutions may exist between the spinodal points�. However,
their implementation leads to much more computational ef-
fort �with respect to the standard equal-area Maxwell con-
struction� because it demands the time-consuming evaluation
of the Helmholtz free energy, and it also requires that the
applied closure provides a high thermodynamic consistency
since one is forced to move on different thermodynamic
routes.

In general, the two ways of calculating the chemical po-
tential, namely the thermodynamic integration of the virial
pressure �standard Maxwell construction� and the application
of the direct Lee formula should lead to identical results
provided the exact bridge function is used. Of course, in
approximate integral equation evaluations, as in our OZ/
SMSA/FC case, both routes will yield to some extent differ-
ent results. Comparing the obtained theoretical results with
simulation data �16� has allowed us to conclude that the

Maxwell construction appears to be better than the Lee for-
mula in the particular case of the SMSA closure for ideal
Ising fluids, which might be explained by the fortunate can-
cellation of errors introduced by the approximate SMSA
equation. For other systems and other closures, the situation
may differ.

In view of these facts regarding the pure ideal Ising fluid,
and since the existence of solutions in a large part of ther-
modynamic space including the phase coexistence region is
also provided in the case of a binary mixture, it should be
worthwhile to formulate an analogy to the Maxwell equal-
area construction for a two-component system and express
the chemical potentials in terms of the virial pressure.

In order to do so we define the excess Helmholtz free
energy of a binary mixture as Fex�Na ,Nb ,T ,V ,H��F−Fid,
where Fid is the free energy of a pure ideal gas. Fex is con-
nected to an excess pressure Pex via

Pex�Na,Nb,T,V,H� = P − Pid = − 	 �Fex

�V



Na,Nb,T,H
. �25�

From Fex one can derive the excess chemical potentials �a
ex

and �b
ex as

�a
ex�Na,Nb,T,V,H� = 	 �Fex

�Na



Nb,T,V,H
,

�b
ex�Na,Nb,T,V,H� = 	 �Fex

�Nb



Na,T,V,H
. �26�

By integrating Eq. �25� one obtains the excess free energy,

Fex�Na,Nb,T,V,H� = − �
�

V

Pex�Na,Nb,T,V�,H�dV�,

�27�

and its density fex�� ,x ,T ,H�

fex��,x,T,H� �
Fex

V
= ��

0

�

Pex���,x,T,H�
1

��2d��

= ��
0

� 	P���,x,T,H�
��2 −

kBT

��

d��, �28�

where the ideal gas equation of state Pid=�kBT has been
used. With the relations

	 �Fex

�Na



Nb,T,V,H
= 	 �fex

��



x,T,H
−

x

�
	 �fex

�x



�,T,H
,

	 �Fex

�Na



Nb,T,V,H
= 	 �fex

��



x,T,H
+

1 − x

�
	 �fex

�x



�,T,H
, �29�

we obtain for the chemical potentials

FENZ, OMELYAN, AND FOLK PHYSICAL REVIEW E 72, 056121 �2005�

056121-4



�a
ex��,x,T,H� =

P��,x,T,H�
�

− kBT

+ �
0

� 	P���,x,T,H�
��2 −

kBT

��

d��

− x�
0

� Px���,x,T,H�
��2 d�� �30�

and

�b
ex��,x,T,H� =

P��,x,T,H�
�

− kBT

+ �
0

� 	P���,x,T,H�
��2 −

kBT

��

d��

+ �1 − x��
0

� Px���,x,T,H�
��2 d��, �31�

where Px�� ,x ,T ,H����P�� ,x ,T ,H� /�x��,T,H. In view of the
conditions for phase coexistence,

P��I,xI,T,H� = P��II,xII,T,H� = P , �32�

�a��I,xI,T,H� = �a��II,xII,T,H� , �33�

�b��I,xI,T,H� = �b��II,xII,T,H� , �34�

we can now write Eq. �33� as

P
�I

− kBT + �
0

�I 	P��,xI,T,H�
�2 −

kBT

�

d�

− xI�
0

�I Px��,xI,T,H�
�2 d� + kBT ln��I�1 − xI��

=
P
�II

− kBT + �
0

�II 	P��,xII,T,H�
�2 −

kBT

�

d�

− xII�
0

�II Px��,xII,T,H�
�2 d� + kBT ln��II�1 − xII�� ,

�35�

and Eq. �34� as

P
�I

− kBT + �
0

�I 	P��,xI,T,H�
�2 −

kBT

�

d�

+ �1 − xI��
0

�I Px��,xI,T,H�
�2 d� + kBT ln��IxI�

=
P
�II

− kBT + �
0

�II 	P��,xII,T,H�
�2 −

kBT

�

d�

+ �1 − xII��
0

�II Px��,xII,T,H�
�2 d� + kBT ln��IIxII� .

�36�

Defining the functions Q1 and Q2 as

Q1��I,�II,xI,xII,T,H�

= P	 1

�II
−

1

�I

 + kBT ln

1 − xII

1 − xI

+ �
0

�II 1

�2 �P��,xII,T,H� − xIIPx��,xII,T,H��d�

− �
0

�I 1

�2 �P��,xI,T,H� − xIPx��,xI,T,H��d� , �37�

and

Q2��I,�II,xI,xII,T,H�

= P	 1

�II
−

1

�I

 + kBT ln

xII

xI

+ �
0

�II 1

�2 �P��,xII,T,H� + �1 − xII�Px��,xII,T,H��d�

− �
0

�I 1

�2 �P��,xI,T,H� + �1 − xI�Px��,xI,T,H��d� ,

�38�

the conditions for phase equilibrium �32�–�34�, obtained via
the Maxwell-like construction, can be cast into the form

P��I,xI,T,H� = P��II,xII,T,H� = P , �39�

0 = Q1��I,�II,xI,xII,T,H� , �40�

0 = Q2��I,�II,xI,xII,T,H� . �41�

If both xI and xII are set equal to 1, Eq. �41� becomes

Q2��I,�II,T,H� = P	 1

�II
−

1

�I

 + �

�I

�II 1

�2 P��,T,H�d� = 0,

�42�

reproducing the equation for the usual Maxwell construction
in a pure fluid, as applied in �16�.

FIG. 2. The virial pressure P*�x ,�*� of the ideal Ising mixture
obtained from the OZ/SMSA/FC integral equation theory for
T*=kBT /�=4, H=0 �P*= P�3 /� ,�*=��3�.
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III. NUMERICAL DETAILS

By applying the three-dimensional Fourier transform

f̃�k� = �
V

f�r�exp�ik · r�dr = �
0

�

4�r2f�r�sin�kr�/�kr�dr ,

�43�

where f is any function of r, the OZ integral equations �9�
can be transformed into a system of linear algebraic equa-
tions,

h̃
��k� = c̃
��k� + �
=1

3

�c̃
�k�h̃��k�, 
,� = 1,2,3,

�44�

which can be written in 3�3 matrix form as h̃�k�
= c̃�k�+�c̃�k�h̃�k�, with � being the diagonal matrix �
=diag��1 ,�2 ,�3�. The OZ equations �9�, SMSA closure
�10�–�12�, field constraint �20� and pressure constraint �23�

�in the case of constant P calculations� constitute a coupled
set of nonlinear equations that was solved iteratively using
the efficient method of modified direct inversion in the itera-
tive subspace �MDIIS� �21�. For given values of � �or P�, x,
T, and H, the iteration starts with initial guesses for c�r� and
x� as well as � in case of fixed P. After calculating the
Fourier transformed functions c̃�k�, the total correlation
functions in Fourier space are found analytically via

h̃�k�= �I−�c̃�k��−1c̃�k�, and transformed back to real space
using the inverse Fourier transformation

f�r� = 1/�2��3�
0

�

4�k2 f̃�k�sin�kr�/�kr�dk . �45�

Now the residuals of the SMSA, FC, and PC equations are
evaluated with the current values of c�r�, h�r�, x�, and �.

FIG. 3. The chemical potential �a
*�x ,�*� of the ideal Ising mix-

ture obtained from the OZ/SMSA/FC integral equation theory for
T*=4, H=0 ��a

*=�a /��.

FIG. 4. The chemical potential �b
*�x ,�*� of the ideal Ising mix-

ture obtained from the OZ/SMSA/FC integral equation theory for
T*=4, H=0 ��b

*=�b /��.

FIG. 5. The magnetization m�x ,�*� of the ideal Ising mixture
obtained from the OZ/SMSA/FC integral equation theory for
T*=4, H=0.

FIG. 6. x-P phase diagram of the ideal Ising mixture at T*=4,
H=0. Dashed line, coexistence curve from the OZ/SMSA/FC inte-
gral equation theory �Eqs. �22��; solid line, coexistence curve ob-
tained via Maxwell construction �Eqs. �39�–�41��; dotted line, Curie
line; squares, results from Gibbs ensemble MC simulations; filled
circles, results from semigrand canonical MC simulations and mul-
tihistogram reweighting; open circles, para-ferro magnetic critical
points from simulations in the isobaric-isothermal ensemble. All
simulation results are taken from Ref. 2.

FENZ, OMELYAN, AND FOLK PHYSICAL REVIEW E 72, 056121 �2005�

056121-6



New values of c�r�, x�, and � are then obtained from the
MDIIS algorithm, and the iteration continues until the rela-
tive root-mean-square magnitude of the residuals is below
10−7.

Using Eqs. �14� and �15�, pressure and chemical poten-
tials can thus be found at a certain constant temperature T in
a range of concentrations x and densities �. In practice, we
obtained P, �a, and �b on a discretized grid with 0.001�x
�0.999 and �x=0.001, 0.001���0.899, and ��=0.001.
Equations �22� were then solved using bilinear interpolation
for the functions P�x ,��, �a�x ,��, and �b�x ,�� and a Hybrid-
Newton algorithm to find the roots of the equations. For the
calculations with the Maxwell-like construction we applied
bilinear interpolation for the function P�x ,�� only and solved
Eqs. �39�–�41� using the same algorithm as before. The de-
rivatives of the pressure with respect to concentration, occur-
ring in Eqs. �37� and �38�, were calculated by bilinear inter-
polation between the slopes in four adjacent grid points.

In the case of constant pressure, the chemical potentials
�a and �b were calculated for 0.001�x�0.999 and �x
=0.001, for temperatures in a specified range. Here the equa-
tions of phase coexistence �24� could be solved for each

temperature independently, using only the functions �a�x�
and �b�x�, obtained from cubic spline interpolation.

The MC simulations for the ideal Ising mixture were al-
ready performed earlier and are described in �2�.

IV. RESULTS

We have investigated the x-T-P phase diagram of the
ideal Ising mixture in the absence of a magnetic field
�H=0�, by calculating phase boundaries in several constant-
T and constant-P sections via the integral equation theory
described in Sec. II. The topology of the overall phase be-
havior is visualized in Fig. 1, showing the mean-field �MF�
diagram for this system, as calculated in �2�. As stated there,
the MF results can only be qualitatively compared to MC
data.

Figures 2–5 show the reduced virial pressure P*= P�3 /�,
chemical potentials �a

*=�a /�, �b
*=�b /� and magnetization

m as functions of density �*=��3 and concentration x calcu-
lated within the OZ/SMSA/FC integral equation theory at a
temperature T*=kBT /�=4. One can see the kink in the P and

FIG. 7. x-P phase diagram of the ideal Ising mixture at
T*=3.5, H=0. Symbols as in Fig. 6.

FIG. 8. x-P phase diagram of the ideal Ising mixture at T*=3,
H=0. Symbols as in Fig. 6.

FIG. 9. x-P phase diagram of the ideal Ising mixture at
T*=2.5, H=0. Symbols as in Fig. 6.

FIG. 10. The density �*�x ,T*� of the ideal Ising mixture ob-
tained from the OZ/SMSA/FC/PC integral equation theory for
P*=1, H=0.
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�b surfaces where the magnetization becomes finite. In Fig.
6 we present the phase coexistence curves obtained from
these functions both via Eqs. �22� and by applying the Max-
well construction �39�–�41�. Also shown is the Curie line
indicating the transition from zero to finite magnetization.
For comparison, we have added our results from simulations
in the Gibbs ensemble and the semigrand ensemble �2� for
the same system. Obviously, the Maxwell construction yields
a large improvement over the integral equation results ob-
tained by the usual method, and the corresponding binodal
curve almost coincides with the MC data. Still, neither of the
methods allows us to approach the critical region where we
expect to find a tricritical point. For the first method this is
not surprising, since the same is already true in the one-
component case, but in the pure Ising fluid the Maxwell con-
struction allowed us to calculate the binodal curve up to the

�tri�critical points �16�. However, the higher complexity of
the mixture �four unknowns instead of two� and the numeri-
cal subtleties of solving the Maxwell construction equations
�39�–�41� prevent convergence in the critical region of the
two-component system.

When going to lower temperatures �Figs. 7–9� the differ-
ence between the two routes becomes smaller but the Max-
well construction is still superior and agrees very well with
the MC data. As to the Curie line, it is also in good agree-
ment with the results of our simulations performed in the
isobaric-isothermal ensemble �2�.

If we want to look at the x-T diagrams in the constant-P
plane, we use the OZ/SMSA/FC/PC version of our theory
which applies the pressure constraint, Eq. �23� to the solu-
tions. Figures 10–13 show the reduced density �*, chemical
potentials �a

*, �b
*, and magnetization m as functions of

FIG. 11. The chemical potential �a
*�x ,T*� of the ideal Ising mix-

ture obtained from the OZ/SMSA/FC/PC integral equation theory
for P*=1, H=0.

FIG. 12. The chemical potential �b
*�x ,T*� of the ideal Ising

mixture obtained from the OZ/SMSA/FC/PC integral equation
theory for P*=1, H=0.

FIG. 13. The magnetization m�x ,T*� of the ideal Ising mixture
obtained from the OZ/SMSA/FC/PC integral equation theory for
P*=1, H=0.

FIG. 14. x-T phase diagram of the ideal Ising mixture at P*=1,
H=0. Symbols as in Fig. 15.
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temperature and concentration obtained in this manner at
fixed pressure P*=1. Equations �24� were then solved to cal-
culate the binodal curve in Fig. 14 from the chemical poten-
tials. Coexistence curves for other pressures, P*=0.5 and
P*=2, can be seen in Figs. 15 and 16. With increasing pres-
sure, the deviations between integral equation theory and
simulations, especially near the critical region, get larger.

The Maxwell construction of course cannot be combined
with the pressure constraint, since calculating the integrals
occurring in Eqs. �37� and �38� requires knowledge of the
function P�x ,�� in the whole x-� region. Solving �39�–�41�
for the fixed pressure yields only one pair of points on the
coexistence curve, so in order to find the whole phase bound-
ary in the x-T diagram, P�x ,�� has to be calculated for each
value of T in the considered range, which turns out to be too
time consuming. For this reason, we do not show a coexist-
ence curve obtained via Maxwell construction in the
constant-P diagrams.

V. CONCLUSIONS

We have formulated an integral equation theory for a
magnetic mixture of an ideal Ising fluid and a soft-core fluid
by mapping it onto the equivalent nonmagnetic ternary sys-
tem with two symmetric components. We have calculated
total and direct correlation functions by numerically solving
the Ornstein-Zernike equation, the SMSA closure relation,
and the field constraint. Via applying a Maxwell-like con-
struction for the determination of phase equilibria in the
x-P plane, we have achieved an almost exact coincidence
with MC simulation data. The usual method of equating the
chemical potentials obtained from Lee’s formula yields sig-
nificantly inferior results, but it is also applicable in constant-
pressure calculations. Our theory is also suitable for more
complicated systems such as mixtures of nonideal Ising flu-
ids with Lennard-Jones fluids, which will be considered in
future studies.
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APPENDIX

The Gibbs free energy of a magnetic binary mixture in the
presence of an external field has the form

G = �aNa + �bNb − HM . �A1�

On the other hand, the Gibbs free energy of a nonmagnetic
ternary mixture is

G = �1N1 + �2N2 + �3N3. �A2�

Taking into account that Na=N1, Nb=N2+N3, and
M =N2−N3 �see Eqs. �4� and �5��, one obtains that both
forms of G are equivalent if and only if

�a = �1, �b =
�2 + �3

2
, H =

�3 − �2

2
. �A3�

Thus we come to Eqs. �19�–�21� and can immediately map
Eqs. �18� to Eqs. �22�.

It is interesting to remark that when flipping all N2 spins
from up �s= +1� to down �s=−1� and all N3 spins from down
to up without changing their spatial coordinates, the total
change of the potential energy �Eq. �5�� will be completely
determined by the change in the Gibbs free energy. Indeed,
then �U=2HM =−H�M, because the terms related to inter-
particle interactions do not contribute to �U due to the sym-
metry �see Eq. �6�� of the potentials �in particular, due to the
property u22=u33�, while the change in the magnetization is
�M =−2�N2−N3�=−2M, since M→−M. During the above
mutual exchange N2↔N3, the change in the Gibbs free
energy according to Eqs. �A1� and �A2� is equal to
�G=−H�M = ��3−�2��N2−N3�=2HM, and thus �G=�U.

FIG. 15. x-T phase diagram of the ideal Ising mixture at P*

=0.5, H=0. Dashed line, coexistence curve from the OZ/SMSA/
FC/PC integral equation theory �Eqs. �24��; other symbols as in Fig.
6.

FIG. 16. x-T phase diagram of the ideal Ising mixture at P*=2,
H=0. Symbols as in Fig. 15.
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This result is, of course, consistent with the thermodynamic
relation G=U−TS+ PV, because the pressure P and entropy
S are invariant ��P=0 and �S=0; see, for instance, the
virial equation of state, Eq. �14�� with respect to the above

transformation N2↔N3 due to the same symmetry �Eq. �6��
in the interparticle potentials. Therefore, in a constant
NVT ensemble �note that N=N1+N2+N3� we have that
�G=�U−T�S+�PV=�U.
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